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Abstract. A percolation model. which we call bond percolation on antipercolation clusters. 
i s  introduced for venereal epidemics in a heterosexual population. A spin model which is 
equivalent to this model is found and solved in the Bethe cluster approximation. We obtain 
the static critical exponents p = 1 and y =  I using this approximation, and these are the 
same as the mean-field exponents for regular percolation. The approximate phase diagram 
for arbitrary coordination number I is also constructed. Finally, the probability that an 
infected individual belongs to an infected erour, with s individuals is obtained analytically 
in the limit z +a. 

1. Introduction 

Both site and bond percolation have been studied extensively as models of disordered 
media [l]. In site percolation, each site on a regular lattice can be either white or 
b!ack. The prob&i!ity that a site is b k k  is p, whi!e !he prohebi!i!y !kit e site is white 
is 1 - p .  If we connect all the nearest-neighbour pairs which are black, we obtain a set 
ofclusters which are called a percolation cluster. On the other hand, in bond percolation 
we let bonds be black or  white with the probabilities p and 1 - p  respectively. Two 
black bonds belong to the same cluster if they are connected by a sequence of touching 
black bonds. For both site percolation and bond percolation, the system undergoes a 
phase transition at a certain value of p which we call p c .  For p >pc3  there exists a n  
infinite percolation cluster. It is natural to introduce another kind of percolation which 
is called site-bond percolation [2-41. In site-bond percolation, each site is occupied 
with probability p s ,  while each bond is occupied with probability pR.  Two sites are in 
the same cluster if they are connected by a series of occupied sites and bonds. 

There are many applications of percolation. One we would like to mention here is 
the use of percolation as a model of a general epidemic [S-71. In general epidemics, 
we consider a large number of individuals on a regular lattice. Each site in the lattice 
is occupied by an individual, and it  is assumed that the disease transmission may occur 
only between nearest neighbours. I f  a disease carrier transmits the disease to one of 
its nearest neighbours, we place a bond between them. The probability that this occurs 
is p .  A cluster of infected sites in which every site is infected by one disease carrier is 
a bond percolation cluster when f = m. Thus the general epidemic process can be 
treated as a dynamical bond percolation problem [6 ,7] .  

In antipercolationt [ 8 , 9 ] ,  each site is also coloured either black or white with 
probability p or 1 - p ,  respectively. However, the clusters are defined in a different 

t Antipercolation is sometimes referred to as AR percolation in the literature 
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fashion than in percolation. We say a cluster is an antipercolation cluster (APC) if each 
nearest-neighbour pair in the cluster is made up of a black and white site. The relation 
between percolation and antipercolation is similar to that between ferromagnetism and 
antiferromagnetism. As in percolation, there may exist a pc at which the system 
undergoes a phase transition. Note that this system is symmetric with respect to the 
colour: in other words, the system is symmetric about p = f. This means that if p = pc 
is a critical point, then p = 1 - p c  is also a critical point. For p C = p s  1 -pc, an infinite 

that there is no infinite APC on the square lattice and the hexagonal lattice for any 
value o f p  [IO], and there is an infinite antipercolation cluster on the triangular lattice 
for a range of p values about f [ I l l .  Monte Carlo estimates of pc and the static critical 
exponents are given for the triangular lattice, in [12]. 

In this paper, we introduce a generalization of antipercolation which we call bond 
percolation on antipercolation clusters (BPAPC).  In this model? we consider a regular 
lattice in which a site is ‘male’ or ‘female’ with probability p or 1 -p ,  respectively, 
while each bond can be either occupied or unoccupied with probability E or I - E  
respectively. A bond belongs to a BPAPC cluster if it not only belongs to an APC but 
is occupied as well. A site belongs to a particular BPAPC cluster if it is touched by a 
bond which belongs to the BPAPC cluster. Because the bonds which do  not belong to 
an APC have no effect on the probability of finding a BPAK cluster: we need only 
consider the bonds which belong to an APC to be occupied or unoccupied. This means 
that the bond percolation problem is defined only on the APCS, not on the entire lattice. 
This is the reason that we call this model bond percolation on antipercolation clusters. 
BPAPC reduces to antipercolation in the limit E + 1. 

Our primary motive for introducing BPAPC is that it is a model for the spread of a 
venereal epidemic through a heterosexual population. Human history is replete with 
examples of the epidemic spread of sexually transmitted diseases (including the current 
AIDS epidemic), so this is a problem of great practical interest. In general epidemic 
processes, the disease spreads from one individual to another without regard for the 
sex of the individuals, and the process can be modelled using dynamical bond percola- 
tion. In the case of venereal epidemics, on the other hand, the disease can only be 
transmitted from infected individuals to uninfected individuals of the opposite sex. A 
realistic model of a venereal epidemic must take into account the following three facts: 
first, an individual can only transmit the disease directly to his or her ‘acquaintances’, 
and the number of acquaintances is much smaller than the total number of individuals; 
second, in a heterosexual population the venereal disease can only be transmitted from 
an infected individual to a member of the opposite sex; finally, venereal diseases can 
only be spread by sexual contact. We assume that the number of acquaintances is the 
same for every individual and denote this number by z. We also assume that we can 
put all the individuals into a regular lattice with coordination number z. We let every 
site be occupied by a male with probability p or a female with the probability 1 -p. 
Clearly, the disease can spread only within an APC. If the disease propagates between 
a nearest-neighbour pair, we place a bond between those two sites. We let E be the 
probability that the disease is transmitted between an infected individual and a 
particular acquaintance of the opposite sex. Clearly, at f =a? the group of individuals 
infected by a single diseased individual forms a BPAPC cluster. In the limit E +  1, we 
recover pure antipercolation. Apart .from its application to the venereal epidemic 
problem, antipercolation has other applications, such as a gelation problem in which 
the cross-linking occurs only between pairs of unlike monomers [SI. 
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In this paper, we establish a mapping between BPAPC and the diluted alternating 
Potts model in the limit q + 1. The phase diagram and the static critical exponents are 
obtained in the Bethe cluster approximation. We find that p = 1 and y = 1. These 
exponents are the same as the exponents for regular percolation in the mean-field 
approximation [ 13,141. In most populations, we have p = i to a good approximation. 
For this special case we obtain the average size of an infected group and the probability 
of the appearance of an infected group in which there are s infected individuals, again 
u ~ u g  LIK DCLIIG CLU~LCI  dpp~ox~rnauon. 

This paper is organized as follows: in section 2, we develop a mapping between 
BPAPC and the diluted alternating Potts model in the limit q +  1. In section 3, the 
diluted alternating Potts model is solved approximately using the Bethe cluster approxi- 
mation, and the phase diagram and the static critical exponents are obtained. Finally, 
we present our conclusions in section 4. 

..-:..- .l.- n^.L.  ^I ^__....:-.I.. 

2. Mapping onto the diluted alternating Potts model 

Both site percolation and bond percolation can be mapped onto the q-state Potts 
model in the limit q + 1 [2, 13, 141. In this section we will show that BPAPC is equivalent 
to a model which we call the diluted alternating q-state Potts model in the limit q + 1 .  
Consider a spin model on a regular lattice in which every site has two variables, one 
a Potts variable A which takes on the values 1 , 2 , .  . . , q, and the other an king spin 
variable u which takes on the values i l .  In  the ordinary diluted Potts model, Potts 
spins on nearest-neighbour sites interact only when the two sites have the same value 
of U. In the diluted alternating Potts model, on the other hand, Potts spins on 
nearest-neighbour sites interact only when the two sites have different values of U. The 
model has the Hamiltonian 

P- 'H=J 1 { 8 ( u j ,  -ui ) [8(Aj ,  A,)- 1]}+ h, 1 uj+ h 1 1 1  -8(A,, 1 ) ) .  (1) 
,,n 

Here Z; and 1"" denote summations over all sites and over all nearest-neighbour pairs 
of sites, respectively, the us are king spin variables, and the As are q-state Potts 
variables, h,? and h are external fields coupling to the variables U and A: respectively, 

We will now show that the diluted alternating q-state Potts model is equivalent to 
~ p ~ ~ ~ f o r J = l n ( l - ~ ) ,  h,=f ln(p- ' - l )and  q +  l.Toseethis,weconsiderthepartition 
function for the diluted alternating Potts model, 

Z =Tr[exp(-pH)]. 

Since 
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We now expand out the product in (3). Each term in the expansion will be given a 
graphical representation as follows. A factor 8(uj,  0;)  will be represented by placing 
a white bond between the nearest-neighbour sites i and j .  If a factor 8 ( u ; ,  -uj) appears, 
the bond between the sites i and j will be coloured grey. Finally, a factor 
8(u j ,  -u,)8(A8, A j )  will be represented by placing a black bond between these sites. 
Each term in the expansion is represented by a graph G in which all bonds are specified 
to be white, grey or black. Consider the weight assigned to a particular graph G. Each 

bond a factor of 1. 
A site may be touched by bonds of up to three different colours. The colour of the 

site is designated to be the colour of the darkest bond which touches it. We then have 
clusters of three different colours: black, grey and white. 

Not all graphs G give a non-zero contribution to the partition function. Both black 
and grey bonds will be called shaded bonds. A graph G which contains clusters of 
shaded bonds which are not APCS contributes nothing to Z once we have summed out 
the Ising spins. Therefore, the sum over graphs is restricted to those in which the 
shaded clusters are APCS. The black clusters are subsets of the shaded clusters, and so 
are bond percolation clusters on antipercolation clusters. 

We see that a site which bas its Ising spin up or down carries a factor eCh- or eh-, 
respectively, and that each bond in a black cluster carries a factor 
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black bond carries a factor of I -e’; each grey bond a factor of e’, and each white 

S(&, A,.) exp{h[8(Aj, 1)-11)(1 -e’). 

Consider a black cluster which has b bonds, s, sites with their lsing spins up, and sd 
sites with their Ising spins down. After summing out all the As in this cluster, we obtain 
a weight factor 

( i  -e I \ b r  , (1 + i 4  - 1 )  exp[-h<s,+ sdjji exp[-h,(s,- S,)j 

in the partition function, On the other hand, a grey cluster which has b bonds, s, up 
spins, and sd down spins gives the weight 

e’”[[l + ( q  - 1) e-h](ru+rd) exp[-h,(s,-sd)] 

once the As have been summed over. Finally, after taking the sum over the As, a white 
cluster which has b bonds and s sites yields the weight factor 

[ I + ( ~ - I )  e ~ ~ ] ” e x p ( - h , , ~ u )  

where U takes on the value 1 or -1, and U is the common value of the king spins in 
the cluster. 

Consider an allowed configuration G formed by the three kinds of clusters defined 
above. Let N ( b ,  s,, sd) be the number of black clusters with h bonds, s. sites which 
have the king spin value + I ,  and sd sites which have the king spin value - I  in the 
configuration G. Also, let N’(b‘, s:, si) be the number of grey clusters with b’ bonds, 
s: sites which have the Ising spin value + I  and SA sites which have the king spin 
value -1. Finally, let M’(b,, s*) be the number of white clusters with b, bonds and 
s* sites which have the king spin value 4-1 and -1, respectively. Because each site in 
the lattice must belong to a black, grey or white cluster, we have the following relation: 

1 [s+M+( b+ ,  s+) + s - M - (  b-, S-)+ (s,+ sd )N(b ,  su, sd) 
(h.\J 

-\ + ( s : + s h ) N ’ ( b ’ ,  s:,sA)]= N. (4) 
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Here N is the number of sites in the lattice and Z(,,s) denotes the sum over all the 
possible sets of the numbers of bonds b, b,, b- and b' and over the numbers of sites 
s, si, s- and s'. The configuration G contributes the following term to the partition 
function: 

& =  n ( [ l + ( q - l )  e--h]s+M-(b*.r+) e v -  h,s+M+( b+ , $+)I 
1 4 s )  

~ [ 1 + ( ~ - 1 )  e-h]r.M-lbL.) exp[h,s-M-(b_, s-)] 

x [(I  -e')b[l + (q - 1) e--h14+.~"l]]N(h.'".ldl exp[h&-s.)N(b,  dl 
exp[h,(sl,-s:)N'(b', s:, ~ 3 1 )  (5) {eJh'[l + ( q  - 1) e-h].v;+.s:) N'(b',s;J;I 

where n,,,, represents the product over all the possible sets of the numbers of bonds 
and the numbers of sites. Substituting 1 -e' = E and h,  = 5 In(p-l- 1) into ( 5 )  and 
using (4), we obtain 

G-p-N/2(l-p)-N/2 n ( [ ~ + ( ~ - l )  e-h]r+M*(b I 1 r+M*(b+.s+I  z -  *' * P 
1h.r) 

x [ l + ( q -  1) e -h ] r -M-(h . .~~ i  (1 -p)r.M-(b..~~) 

x { E b [ l + ( q -  1 )  ~ - h l ~ " + ~ " l ~ ~ N ( b . ~ " . ~ ~ i ( l  - p ) s d N ( b . s  I 1 TuN(b . su .Q 

x { ( l  - E ) b ' [ l  +(4 - 1 )  e-h]';+':}N'[h'.':.";' 
" ' d P  

x(1-p) .  "l P 1. ( 6 )  s ; N ' ( b ' , s '  1 ' 1  s ; N ' I b , s ; , s ; i  

The partition function is 

where the sum runs over all the allowed configurations G. 
We now show that the partition function Z is related to BPAPC through the formula 

Here P(s) is the probability that a site belongs to a cluster with s sites in BPAPC. If 
we expand (6) in terms of 8 = q - 1 and keep only terms of first order in 8, we obtain 
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We now easily obtain 
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The summation Z;b,,v,,dt in (9) runs over b, s, and sd with s,+sd=s. From (8) and (9), 
we see that P(G)  is the probability that a configuration G occurs in BPAPC and that 
Pc(s) is the probability that a randomly chosen site belongs to an s-site BPAPC cluster 
for the given configuration 0. Thus the probability that a site belongs to a BPAPC 

cluster which possesses s sites is 

p ( s ) = x  Pc(s)P(G).  
0 

For finite N, we have P, Zc Pc(s)P( G )  = Z, P(s) = 1. Therefore, we obtain (7) as 
required and our mapping between BPAPC and the diluted alternating Potts model is 
established. In particular, we see that the diluted alternating Potts model is equivalent 
to pure antipercolation for h, = f  In(p-'- 11, J + m  and q +  1. This correspondence 
bas previously been noted by Halley [15j. 

The function F ( h )  is a generating function, and F(0) is the probability that a 
particular site belongs to a finite BPAPC cluster. Therefore, in the limit N+m, F(0) 
will be equal to 1 if there is no infinite BPAPC cluster in the lattice. Thus, from F ( h )  
we can compute the probability that an infinite BPAPC cluster appears, 

P A = I - F ( 0 ) .  (10) 
The average cluster size (s) and the mean-square cluster size ( s2 )  can also be computed 
from F ( h ) :  clearly, 

and 

Higher moments of the probability distribution can be obtained from the higher 
derivatives of F ( h ) .  

We close this section by considering the case of a lattice which can be divided into 
two sublattices for p = i .  For p = i ,  we have h,, = O .  We now replace the king spins U 
on one of the two sublattices by - K  The partition function (equation (3 ) )  is unaltered 
by the relabelling, but we now see that 2 is just the partition function for site-bond 
percolation for pS=f [2 ] .  Therefore, if we know the phase boundary for site-bond 
percolation, we have the critical value of E for BPAPC with p = f .  
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As an example of the utility of this observation, consider BPAPC on the hexagonal 
lattice. The hexagonal lattice can be divided into two triangular sublattices. The critical 
boundary of site-bond percolation on the hexagonal lattice is ps(3p2, - p L )  = 1 PI.  
When pS=f ,  this formula can be applied to antipercolation on the hexagonal lattice 
with p = f .  The value of p s  in the site-bond problem corresponds to our E.  The equation 
3 ~ ~ -  = 2 has no root which is less than 1. Therefore, no phase transition occurs as 
E is increased from 0 to 1 in BPAPC on the hexagonal lattice. In particular, there is no 
infinite cluster in antipercolation on the hexagonal lattice at p = f. The latter conclusion 
has been reached previously in [ l o ]  and [15] .  

3. Bethe cluster approximation 

In this section, we apply the Bethe cluster approximation [16]  to the diluted alternating 
Potts model. To perform the Bethe cluster approximation, we consider a site with king 
spin u and Potts spin A. This site has z nearest neighbours which will be labelled by 
the subscript j .  The effective Hamiltonian He, of this cluster is 

f l - ’ H C m = J ~ { S ( u ,  - u j ) [ S ( h ,  A j ) - l ] } + h : z  U,+ h ’ x  [ l  - S ( A j ,  l ) ]  
j 1 j 

+ h,u+ h [  1 - 8(A, l ) ]  

where h: and h’ are the effective fields which correspond to h, and h, respectively. 
The effective fields are chosen so that the average values of u and S(A, 1) are the same 
for the site and its nearest neighbours. Thus, h: and h‘ are determined by the following 
equations, 

a In Z,, a In Z,, __- z - I  ~ 

ah,. ah: 
- 

where 

Z C f f  =Tr(e-”~.fr). - 

Equations ( 1 3 )  and (14) are the self-consistency conditions. 
In order to obtain a relation between Z,, and F ( h )  employing the Bethe cluster 

approximation, we assume that the field h is different for each site i, and let hi denote 
the field h at the site i. Thus, we can rewrite ( 7 )  in the following form: 

where {h , }  = h means that all the h,s are set equal to h. This formula indicates that the 
contribution of each site to F ( h )  can be treated individually. In the Bethe cluster 
approximation, there are z + 1 sites in the cluster, and one site has field h and the 
other z sites have field h’. Thus, the required relation between F ( h )  and Zcff is 
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The effective partition function z,, is 

Z,rr=e-h-(e-hl[l + ( q  - I )  e - h j + e h l [ ~  + ( q -  I ) ( I  - E )  e-"]}' 

+eh-{eh6[1+(q - I )  e-h ' ]+e-hb[~ + ( q  - I ) ( I  - E )  e-"])' 

+ ( q -  I )  e-h{e-h-(e-hi[l + ( q -  I )  e-h'] 

+ehi[l -&( I  -e?)+(q- I ) ( I  - E)  e-h']) '+eh-(eh-[~+(q- I )  e-"] 
+ e-hbr  2 - E (1 - e-h')  I/" - 9 \ I  I - ,.I n - h ' i w  /,I\ 

L I ,  \ Y  ' I f '  = I '  J I  I I L U l  

where we have put E = 1 -e'. We now substitute this into the self-consistency conditions 
(13) and (14) to determine h' and h' and work to the first order in q -  I .  From (14) 
we obtain h: = h,. Equation (13) leads to the following expression: 

) -2El e - h '  [(eh-+e-h- 

It is not easy to solve (17) in general, but fortunately, we can obtain the information 
needed near the critical line without solving the equation exactly. If we set h = O  in 
(17), we obtain a root h'=O. Substituting the solution h = h'=O into F(h) ,  we find 
F ( 0 )  = 1. Therefore this root corresponds to the phase in which no infinite BPAPC 

cluster exists. The non-zero root of (17) corresponds to the phase in which there is an 
infinite BPAPC cluster. For h = 0, this root must reduce to zero as the critical line is 
approached since h' is a continuous function of p and E. Therefore, h '  is small near 

order in h '  in the area close to the critical point in order to obtain the non-zero root. 
We obtain 

the criticn! !ine when h is sma!!. Thus, we expand (!?I tn first &er in h and !e secnnd 

(x2-2&)h = [xZ-2E - E ( 2 - E ) ( 2 -  I ) +  uh' lh '  (18) 
where 

and 

x -  [p ( l  -p)]-"2. 

For h = O ,  (18) has the roots h ' = O  and ~ ' = - u - ' [ x ' - ~ E - E ( ~ - E ) ( z - ~ ) ] .  On the 
critical line, the latter root reduces to zero. We therefore have the following equation 
for p ,=p.(~) :  

X2=2E + E(2-E)(2- I ) .  

Solving this equation, we obtain 

In the case of the pure antipercolation (E  = l) ,  this reduces to 

p. * l $ I  =-* 
2 4 z + l .  
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The phase diagram is shown in figure 1 for various coordination numbers z. From 
this diagram, we see that as the coordination number z increases, p: decreases. This 
is as one would expect, since the disease spreads more readily when the number of 
acquaintances is large. If E < E~ = 2 / (  z - l) ,  there is no infinite BPAPC cluster for any 
p. On the other hand, for a given E, an infinite BPAPC cluster exists for p = t if 
z P z,= ( 2 +  E)/&. In the limit z + 00 with ZE held fixed, the condition for an infinite 
cluster to appear is Z E / Z L  1. This means that there is no infinite cluster if the average 
----be: cf the ixdividaa!~ ixfected by a disease carrier is !ess than one. 

To obtain the critical exponents, we must calculate F(h). Using the self-consistency 
relations (13) and (14) and (15),  we obtain 

From (i6j, we have 

- & % I q = ,  
- - e ~ h ( e h - [ e h - + e - h - ( l - ~ + ~  e-h’)]’ 

+e-h-[e-h-+eh”(l - E  + E  e ~ ~ ’ ) ] ‘ ) .  (196) 

We find F(h)  for p close to pz or p ;  by expanding of F ( h )  in powers of h and h’. 
We obtain 

2ZE 
F(h)=l-h--h’  

X2 

The non-zero root of (18) is 

1 h’=-[Ju’+ u(x2-2&)h - U ]  
U 

Figure I .  Phase boundaries for IIPAPC for several different coordination numbers 1. Each 
phase boundary is labelled with the corresponding value of 2. The areas above the curvcs 
are the regions in which there is an infinite Cluster. 
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where 
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F ( h )  becomes 

22s 
F ( h ) =  l - h - - [ [ J u 2 + ~ ( x 2 - 2 . s ) h - ~ ] .  ux2 

Using (10) and ( I l ) ,  we obtain 

and 

Z E p ( 1  - p ) ( X 2 - 2 E )  
IP-P:l-llP -Pzl-', (s)= 2 [ 2 &  + E ( 2  - E ) ( Z  - I)] 

From ( 2 0 )  and (21), we see that in the Bethe cluster approximation, the critical 
e x p o n e n t s a r e p = l  and y = l  f o r z > 3 a n d p : > f > p ; . I n t h e c a s e p = f a n d z > 3 ,  
we use (11) and (12) to calculate (s) and ( s 2 )  f o r p = f  and E close to E,.  We obtain 

and 

3 2 z ( z  - ] ) ' E  3 
( s 2 ) =  lE  - 4 ( 2 - & ) [ 2 E +  E ( 2 -  E ) ( Z -  I)]' 

From (22), we see that y = 1. Equation ( 2 3 )  shows that ( s2 )  goes to infinity as ( E  - E , ) - ~  

as E +  ac. Using the scaling relations [I], we find that p is also equal to 1. Thus, we 
conclude that p = 1 and y = 1 for z 3 at each point on the critical line. When z = 3,  

transition occurs when z < 3. For the special case E = 1, our results are in agreement 
with the exact results obtained for pure antipercolation on Bethe lattice [9]. Note that, 
in the Bethe cluster approximation, there is a phase transition for z = 4. This conclusion 
is incorrect for the square lattice, since there is no antipercolation transition in this 
case [lo]. However, in venereal epidemics, the coordination number z is expected to 
be large in many populations, and the results of the Bethe cluster approximation are 
more precise in this regime. 

In venereal epidemics, p is the fraction of the population which is male, and E is 
the probability that the disease is transmitted from an infected individual to an 
uninfected neighbour of the opposite sex. Usually, the number of males in the popula- 
tion is to a good approximation the same as the number of females, so p = f .  Setting 

(24) 

*La-- :" -- ..I..."- +--"":+:-" -"-a"+ Fnr " -  1 
Lllrjlci 1J 11" p,,Cl."c L L I l l J l l l " l l  s*-'Cyt 1"1 r - I ,  Cl,." L L l L  cllllr(.l "',,"L "1 y La 2. I." p"'LL"c "..,I *La ..A&,.*, . ." I . . -  ,.F" i" I hi.. ..Lllrn 

n =t in 117) .nA (10) W P  nhtiin ~...\.,, I ..-.,.,,,..--.-.-... 
e"[,-f&(l-e-"')]'~' = e  h 

and 

F(h)=e-h ' [ l - fE(l  ( 2 5 )  
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A quantity of interest in venereal epidemics is the average number of individuals which 
are ultimately infected by one infected individual. This quantity is (s) in EPAPC. If 
E E ~ ,  (s) = m, so we only consider E < E , .  When E < E,, the solution of (24)  for h = O  
is h'= 0. In order to obtain the average size of the infected group for E s E,,  we need 
to calculate the derivative of h' with respect to h from (24)  for h = 0 and use (11) and 
(25) .  All the calculations are straighforward, so we skip the details and simply give 
the result: 

(26)  

From (26) ,  we see that if there is no transmission of the disease between nearest- 
neighbours, i.e. E = 0, the average size of an infected group is 1. This means that every 
infected site is an isolated group, as we would expect. As E becomes larger, the number 
of infected individua!~ in a groop incrczses, and when E is c!ose to E, ,  this number 
diverges as ( E  - E J ' .  

We next consider the case in which z + m and the quantity n = Z E / ~  is held constant, 
and we again specialize to p = f .  One of the reasons that we are doing this is that n is 
the average number of the individuals that a disease carrier infects directly. Thus, n 
is a natural variable with which to describe an epidemic, and can be measured in a 
real epidemic. The other reason is that the coordination number z is the number of 
acquaintances of an individual and this number is expected to be large, particularly 
in densely populated areas. After we take this limit, (24)  and ( 2 5 )  become 

ZE 

2 - ( 2 - 1 ) E '  
(s) = 1 + 

h ' - h  =n( l -eh ' )  

and 

1 ,.. .~ 
n 

F ( h ) =  1 - - [ h ' -  h ) .  

After solving for h', we obtain 
1 m 

n ,=, s !  

1 SI-' 
P(s) =- - ( n  e-")'. 

F ( h ) = -  -(neC)'e- 'h.  

w c  see fro- (27) that 

n s !  

For large s, P ( s )  can be written in the following form: 

where so=(n- lnn- l ) - ' .  As n goes to 1, so goes to infinity as (l-fl)-'. Using the 
scaling form for P ( s )  [l], we obtain T = ;  from (27) .  This is the same as the value 
which is obtained using the scaling relations and the values of p and y we obtained 
previously. Setting h = 0 in (27), we obtain the probability that the venereal epidemic 
spreads without limit, 

1 m ss-I 

n s=, s! P A = l - -  -(ne-")'. (29)  

If we replace n by n B =  - 2  ln(l-pn) in ( 2 8 )  and ( 2 9 ) ,  these results become exactly 
the same as the mean-field results for bond percolation on a lattice with coordination 
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number L [14], where pR is the fraction of occupied bonds. In the limit z +  m with zpS 
held constant, n R  reduces to zpo ,  which is just the mean number of individuals infected 
by a single disease carrier in a general epidemic. Thus the mean-field results for venereal 
epidemics and general epidemics are equivalent in this limit. 

Kang Wu and R M Bradley 

4. Conclusions 

In this paper, bond percolation on an antipercolation cluster was introduced as a 
model for the spread of venereal epidemics. We found that BPAPC is exactly equivalent 
to the diluted alternating q-state Potts model in the limit q + 1. This mapping gives us 
a way to solve BPAPC approximately using the Bethe cluster approximation. We found 
the dependence of the phase boundary on the coordination number z. By setting E = 1, 
we obtained the threshold for pure antipercolation in the Bethe cluster approximation. 
We aiso obtained the static criticai exponents using this approximation. The static 
exponents for BPAPC in the Bethe cluster approximation are the same as the exponents 
of regular percolation in the mean-field approximation. Finally, we considered the 
special case of venereal epidemics in populations with equal proportions of males and 
females. The average size of an infected group diverges as ( E  - EJ' as E + E , ,  where 
E ,  = 2/(z - 2). In the limit z + m with ZE held fixed, we obtained the probability of a 
siie being in an infected group with s siies, Pis ) .  i n  this iimit, Pis) is simpiy reiatea 
to P i s )  for bond percolation in the mean-field approximation. 

The present paper has dealt solely with the static properties of venereal epidemic. 
In a forthcoming publication we will present the results of a Monte Carlo study of 
the spread of a venereal epidemic. 
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